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Abstract-A method has been developed for calculating the radiant interchange in an enclosure 
containing specularly reflecting surfaces. Consideration is given to systems composed of two specular 
surfaces and an unrestricted number of black surfaces. The method is illustrated by numerical 
examples and comparisons are made with the heat transfer results for diffusely reflecting surfaces. 

R&m&Une mtthode de calcut des echanges thermiques par rayonnement, dans une enceinte ayant 
des surfaces A rkflexion sp&ulaire, a .Sttc dCveloppCe. Les systemes compos&s de deux surfaces speculaires 
et d’un nombre illimite de surfaces noires ont et& consid&&s. La mkthode est illustrk par des exemples 
numCriques et les rksultats sont compares aux rksultats de transmission de chaleur obtenus pour des 

surfaces A rCflexion diffuse. 

Zusammenfassung-Es wurde eine Methode entwickelt, den Strahlungsaustausch in einem von 
spiegelnd reflektierenden OberfIlchen begrenzten Hohlraum zu berechnen. Besondere Beriicksichtigung 
fanden Systeme aus zwei spiegelnden OberflPchen und einer unbeschrsnkten Zahl schwarzer Fl&hen. 
Die Methode wird durch numerische Beispiele erllutert und die iibertragenen Wtirmemengen werden 

mit denen diffus strahlender OberGchen verglichen. 

AHHoTa~wJi-Pa3pa60TaH MeTOx BbIW4CJIeHl4R JlyWCTOrO TeIIJI006MeHa Meltiny 3epKaJIbHO 

OTpa%aIO~HMM IlOBepXHOCTRMH. PaCCMOTpeHbI CIJCTeMbI, COCTOH~Me I43 AByX 3epKaJIbHbIX 

IIOBepXHOCTefi I4 HeOrpaHWfeHHOi-0 KOJIRYeCTBa YepHbIX IlOBepXHOCTeii. MeToR IWIJUOCTpM- 

pyeTCR VMCJIeHHbIMEI IIpMMepaMH, HaHbI CpaBHeHHR C pe3yJIbTaTaMH II0 TeIIJIoO6MeHy RJIR 

cJryqafi j&@y3~0 0Tpamammx noBepxHocTei4. 
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NOMENCLATURE 

surface area; 
black-body emissive power; 
angle factor; 
incident radiant flux per unit time and 
area; 
spacing between parallel plates; 
summation index; 
plate length 
overall rate of heat loss; 
local heat loss rate per unit area; 
distance between surface elements; 
absolute temperature; 
dimensionless distance, x/L; 
co-ordinate measuring distance along 
plate ; 
absorptivity; 

* Professor of Mechanical Engineering. 
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Y spacing ratio, h/L; 
0 opening angle, see Fig. 7; 
E emissivity ; 

Ei interchange emissivity; 

P reflectivity; 
f_7 Stefan-Boltzmann constant. 

INTRODUCTION 

ENERGY exchange by thermal radiation has in the 
literature been discussed almost exclusively for 
diffusely reflecting surfaces. Experiments [ 1, 21 
on the spatial distribution of the reflected energy, 
on the other hand, indicate that the reflection 
on many surfaces of engineering importance 
actually is closer to the limit of specular 
than of perfectly diffuse reflection, even if this 
is not clearly evident by visual inspection of the 
surfaces. This will be amplified in the final 
section of the report. 



RADIATIVE HEAT EXCHANGE BETWEEN SURFACES 43 

The present paper develops a method of 
calculating the heat exchange between plane 
surfaces with specular reflection and presents 
numerical comparisons between specular and 
diffuse heat transfer results for a few typical 
geometries. 

Before going into the analysis of the new 
calculation method, some consideration will 
be given to a geometry for which the analysis 
of radiative heat exchange with specular as 
well as diffuse reflection has been made in the 
past, namely, for two concentric cylinders or 
spheres. The relationships describing heat ex- 
change by radiation between the two surfaces 
will be used to obtain information on the order 
of magnitude of the difference between specularly 
and diffusely reflecting surfaces. 

Heat exchange between concentric spheres or 
cylinders with specularly and d#kely 
reflecting surfaces 

We will consider two co-axial cylinders of 
infinite length or altematively, two concentric 
spheres. The relations for these two geometries 
are identical and for the sake of simplicity we will 
in the future talk onIy about the spherical arrange- 
ment. Parameters for the inner sphere may be 
identified by a subscript I and those for the 
outer sphere by a subscript 2. A denotes the 
surface area, l the surface emissivity, and eb the 
black body emissive power (heat flux emitted 
per unit area and unit time). The heat loss of the 
inner surface 1 and the heat gain of the outer 
surface 2 is then described by the equation 

Q = Al ~2 (ebl - eb2). tu 
The equations which specify the interchange 
emissivity Ei are derived in the various textbooks 
on heat transfer for the situation where the 
surfaces emit according to Lambert’s cosine 
law (for instance in Ref. 3). The relation for 
diflitsely reflecting surfaces is 

(2) 

and for specularly reflecting surfaces 

Introduction of monochromatic emissivities 
and emissive powers into those equations results 
in the heat exchange in a small band at a certain 
wave length. Usually, engineering calculations 
require knowledge of the total amount of 
energy transfer in the whole wave length range. 
For gray surfaces with emissivities independent 
of wave length, equation (1) specifies this energy 
exchange provided that total emissive powers are 
introduced into this equation. They are described 
by ~tefan-Boltzmann’s relation eb = UT*. For 
surfaces with wave len~h-dependent emissivities, 
the radiative heat loss Q has to be calculated with 
equations (1) to (3) at first for monochromatic 
radiation, and the total heat loss is obtained by 
an integration of the monochromatic heat loss 
over the whole wave length range. This statement 
holds not only for the present section, but for 
all calculations in this paper. 

The relations (1) to (3) may be used to establish 
the extent of the differences between specularly 
and diffusely reflecting surfaces which can be 
expected for the specific geometry. For the 
limiting situation that the inner sphere is very 
small compared to the outer one (AI/A2 --f 0), 
the relation for the interchange emissivity in 
diffuse reflection is Ei = Q. Equation (3) remains 
unchanged. If one specifies in addition that both 
surfaces have the same emissivity (e2 = cl), 
equation (3) becomes (l/f<) -I (2/4 - 1. For 
small values of Ed the relation is approximated 
by Ei = 42. This indicates that heat exchange 
for diffusely reflecting surfaces with equal 
emissivities is in the present geometry up to 
two times as large as for specularly reflecting 
surfaces. 

The differences may become even larger when 
the emissivities of the two surfaces have different 
values. Let us assume surface 1 to be a black 
surface (Q = 1). This makes the interchange 
emissivity for diffuse reflection and A,,/A, -+ 0 
also equal to 1. The interchange emissivjty ci 
for specularly reflecting surfaces, on the other 
hand, is equal to e2. It may, therefore, be by an 
order of magnitude smaller for specular reflec- 
tion, when the emissivity c2 has a small value. 

The differences which have just been 
established are, of course, extremes. It can, 
however, easily be checked that differences of 
the same order of magnitude may arise even 
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when the ratio of the two surface areas is not 
extremely small and when the emissivities have 
other values. It can also be expected that the 
geometries investigated in this section exhibit 
differences which will not be reached for other 
geometries. A slight eccentricity of the two 
surfaces, for instance, should bring the heat 
fluxes for diffuse and specular reflection more 
closely together. 

HEAT EXCHANGE BETWEEN PLANE SURFACES 

WITH SPECULAR REFLECTION 

Radiant interchange process 
Consider a space which is enclosed by a 

number of plane surfaces. The temperature may 
be locally uniform on each of the surfaces, but 
may be different for the various surfaces. The 
space is filled by a medium which is perfectly 
transmittant and which does not participate in 
the radiative energy exchange. The surfaces emit 
energy by thermal radiation and the directional 
distribution of the emitted energy flux may follow 
Lambert’s cosine law.* The analysis in this paper 
will be developed for an enclosure with two 
specular-reflecting surfaces, assuming that the 
rest of the surfaces are black. A calculation for a 
larger number of reflecting surfaces is straight- 
forward, but soon becomes exceedingly involved. 
We will start by a consideration of the energy 
exchange between the two reflecting surfaces. 
Fig. 1 is a sketch of the two surfaces 1 and 2. 
Two area elements dA, and dA, may be located 
on the two surfaces. The heat flux emitted by the 
surface element dA, and traveling toward the 
element dA, can be expressed as 

~2 eb2 dA2 @d/i-dA,,o (44 

where dFdAz-dAl,O denotes an “angle factor”, 
i.e. that fraction of the energy emitted by dA, 
which impinges on dA,. The first subscript 
dA, - dA, indicates radiative exchange between 
areas dA, and dA,; while the second subscript 0 
denotes direct interchange with zero reflections. 

* Surfaces may approach Lambert’s Law in emission 
while approaching specularity in reflection; see for 
example, copper oxide in Figs. 13-12 and 13-13 of 
Ref. 3. 

\ 

i 

Fig. 1. Typical enclosure with two non-black surfaces. 

Introducing the reciprocity relationship (Ref. 3. 
pp. 396-397) 

dA, d&-tr:i, = dA, d&4-dil, 

expression (4a) can be rephrased as 

cz eb2 dA, dFdA1-dAZ,O. (4b) 

The surface element dA, receives, in addition, 
radiative energy from dA, in an indirect way, for 
instance, on the path indicated by the dashed 
lines in Fig. 1. The energy arriving after two 
reflections is 

EZ eb2 ~1~2 dFdA,-a,, 2 dA, (5) 

dFdAl_dAZ,z indicates the angle factor for the 
radiation traveling the dashed path in Fig. 1, 
with the second subscript 2 signifying that there 
have been two reflections. Energy also arrives 
at dA, after a larger number of reflections, for 
instance, after 2k reflections : 

~2 eb? P;P; d&il dAz, 2k W. (6) 

The total energy emitted by dA, and arriving at 
dA, per unit area is obtained by a summation 

62 eb2 c p; p; dFdz+d&zk. 
0 

(7) 

The energy emitted by the whole surface area 2 
and arriving at a unit area of dA, is 

E2 eb2 x P: P; h+A2,2k 
0 

(8) 

where FdA,_&,, 2k expresses the angle factor for 
radiation leaving surface 2 and arriving at dA, 
after 2k reflections on surfaces 1 or 2. 

The surface element dA, receives also radiant 
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energy which originates at surface 1 and is 
reflected back to dA, by surface 2. The energy 
arriving is 

after one reflection 

'1 ebl FdA1-A19 1 f2 

after three reflections 

(9) 

<l ebl FdAl-A1, 3 fl Pi 

after 2k + 1 reflections 

(10) 

E1eblFdA1-A1,2k+l f': ft+l. (11) 

The total amount of energy originating at 
surface 1 and arriving at dA, is again obtained 
by a summation 

m 
El ebl c Pt Pt’l FdAl_Al, Zk+l. (12) 

0 

The surface element dA, will also receive 
radiation which is emitted by any of the black 
surfaces of the enclosure and arrives at the 
surface element after one or several reflections 
at surfaces 1 or 2. Let us consider the radiation 
originating from one of the black surfaces 
denoted by i. That part of the radiation for 
which the first reflection occurs at surface 2 can 
be treated formally in the same way as the 
expression (12) when the proper angle factor is 
introduced. The energy flux arriving at dA, after 
one or several reflections is 

t?bi c” f( pt+’ FdAl--4i, Zk+l* 

Cl 
(13) 

That part of the radiation for which the first 
reflection occurs at surface 1 will be described 
again by the same form as expression (8). 

m 
ebi x pt ptFd.4-Ai, 2k. 

II 
(14) 

This expression also contains the radiation 
which arrives directly at dA,. 

The total flux H arriving at a unit area of 
surface 1 at the location of dAl, either directly 
or after reflections from surfaces 1 and 2, can 
now be written as the sum of the expressions 
(g), (12), (13), and (14). 

HI = cl ebl “c p: pi+’ Fd’dAI-AI, 2k+l 
1 

cl 

$_ 62 eb2 2 Pi Pt FdA1-Aa, 2k 
0 

$ 5 ebi [g P’: t$” FdAl-Ai, zkfl 

’ (1% 

*=I Cl 

+ g P: P: Fd&-Ai, Bkl 
0 J 

The summation of radiation originating at 
black surfaces has to be extended over all n black 
surfaces. The net local heat loss per unit area at 
the element dAl finally can be expressed as the 
difference of the amount of radiation emitted 
by the surface and the amount absorbed by it. 

41 = %ebl- ulHl. (16) 

The heat loss at any location of the reflecting 
surfaces can be calculated with equations (15) 
and (16) as soon as the various angle factors 
involved are known. 

The overall net heat loss Q from surface 1 can 
be found from an equation similar to (16), with 
the modifications that the right side is multiplied 
by A, and the angle factors FA~-_A~, FA~-A~, etc., 
are used in evaluating H. This same result can be 
obtained by integrating the local heat loss q over 
the area A,. 

Determination of angle factors 
The angle factor for direct interchange 

dFd.4,-d_+, O is given by the equation 

cos j31 cos j$ 
dFd,A-dA,, ,J = --~ 

rrs2 dAz (17) 

in which j3 denotes the angle between the line 
connecting the two area elements and the 
respective surface normal. s is the distance 
between the two surface elements. The angle 
factor FdAI-&, 0 is obtained by an integration 
over the surface 2. 

F~A~-A~, o = 

s 

cos /?I cos & 
dA,. (18) 

2 77.72 

The angles /I and the distance s have, of course, 
to be considered as functions of the location of 
dA2. 



46 E. R. G. ECKERT and E. M. SPARROW 

The angle factor F&A~-A~, 2 is obtained by the 
following method, which is based on standard 
procedures in optics (see Fig. 2a). Consider the 
emitting area 2 as object and the planes 1 and 2 
as mirrors. Mirror 1 creates an image 2, (Fig. 2a) 

FIG. 2(a). Diagram illustrating angle factors 
F 'IAI-Az,II F ~A~-A~,~ etc. 

of area 2. In turn, this first image 2, is reflected 
in mirror 2, creating image 22. The angle factor 
Fdd,--A,, 2 is then identical with the angle factor 
between the area 2, and the element dA, for 
direct radiative interchange. It can be obtained 
from equation (18) when the area element dA, is 
located on the second image 2, and when the 
angle fi2 and the distance s are interpreted 
accordingly. Two more reflections on the mirrors 
1 and 2 create a fourth image and the angle 

factor Fdz4-AZ, 4 is again identical with the 
angle factor for direct radiative interchange 
between the image 2, and the area element 
dA,. 

The angle factors F&+& 1, F&4-&, 3, and SO 
on, are in the same way obtained by determina- 
tion of the images l,, 1, and so on. Fig. 2(b) indi- 
cates the construction of these images. 

FIG. 2(b). Diagram illustrating angle factors 
Fc,A~-A~,~ etc. 

The angle factors FdA1-A, li of any black 
surface are finally determined in the same way 
by constructing the images of the surface i in the 
mirrors 1 and 2. 

In certain cases, the construction procedure as 
discussed above has to be modified to account 
for the fact that the participating areas may be 
too small to reflect the full images. Fig. 3 

FIG. 3. Diagram illustrating partial use of images. 
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illustrates this point. Only that part of the image 
22 between the rays a and b has to be used to 
determine the angle factor. Generally, that part 
of an image has to be considered from which the 
rays drawn towards the centre of dA, intersect 
area 2. 

ILLUSTRATIVE RESULTS 

It is useful to numerically illustrate the general 
method and, additionally, to make comparisons 
with results for diffusely reflecting surfaces. The 
particular situations treated below were selected 
on the basis of available exact solutions for 
gray, diffuse surfaces. 

Two parallel plates of equal temperature 
The sketch in Fig. 4 indicates two plates of 

width L arranged at a distance h. In the direction 

FIG. 4. Parallel plate system. 

normal to the plane of drawing, the plates are 
taken to be infinite in extent. It will be assumed 
that the two plates are made of the same material 
so that they have equal radiation properties and 
that they are kept at the same temperature 
(E1 = EZ = E, Pl = P2 = PY al = a2 = a, 

e *I = eb2 = eb = aT4). The surroundings of the 
plates may be at a temperature of absolute zero 
so that no radiation enters the space between the 
two plates from the outside. The same condition 
for radiative exchange holds when the two plates 
are connected at their rim by two black surfaces 
at absolute zero temperature. Later on, the 
results will be generalized to account for a black 
surrounding at arbitrary temperature. The angle 
factor for an area element dA located at a 
distance x from the rim of plate 1 is, according 
to Ref. 3, p. 401, 

F, = &(sin v1 + sin p2). (19) 

The angles pi and v2 can be expressed by the 
length dimensions to obtain 

F, = 3 1 (20) 
It is not necessary to differentiate between 
radiation originating at surface 1 or 2 since 
both are at the same temperature. Accordingly, 
only one subscript is used for the angle factors 
to indicate the number of reflections. For k 
reflections, the image is located at a distance 
(k + 1) h. The angle factor for this image is 

L-x 

+ 2/((L - x)” + (k+1)2 I * (21) 
The total flux H arriving at a unit surface area 
at the location of dA is obtained from equation 
(15) which simplifies to the following expression 
if use is made of the fact that the two emissivities 
and emissive powers are equal, that ebi is equal 
to zero, and that no differentiation has to be 
made between the two types of angle factors in 
this equation. 

H = E eb z p” Flc. 
0 

(22) 

The relation (16) then determines the heat loss 
of the surface at location dA with the expression 
(22) for the incident flux H and the relation (21) 
for the angle factors. The following equation is 
obtained when, in addition, dimensionless 
parameters are introduced to characterize the 
length dimensions: X = x/L, y = h/L 

4 --=1_; x 
CUT4 z/{x2+(k+1)2y2) 

II 
1-x 

+ 2/(1-X)2+(k+1)2y2} * (23) 

The total heat loss of each one of the two 
plates is obtained in the same way by introducing 
the following relation for the average angle 
factor between two parallel plates 

& = d/(1 + (k i- l)“r”> - (k + 1)~ 

= r;,,,,, B (24) 



48 E. R. G. ECKERT and E. M. SPARROW 

I.0 , , , , ( , , , , , , , , , , , , , , , , , , , 

e =O.l 

as=--________ _ ------- __---_-_----___--- 

z y = +- = 1.0 - DIFFUSE REFLECTION (ref.41 _ 

(x8- - - -- SPECULAR REFLECTION 

0.6 - ---_ ----_L --- ------____- 

0.5 - 

r I 
1 d 

0 ” ” ” ” ” ” ” ” ” ” ” ” 
0 0.1 0.2 0.3 0.4 0.5 

A 
L 

FIG. 5. Local heat flux results for parallel plate system with Y = h/L =:lQ 

into equations (22) and (16). The following 
relation is obtained in this way 

Q/L __ = 1 - a lf p" [2/{1+(k+1)2r2} 
CUT4 

- (k+l)rl. (25) 

The infinite series in equations (23) and (25) 
have been evaluated on an electronic computer, 
type Remington-Rand 1103. The local heat loss 
on any of the parallel plates, made dimensionless 
by the energy emitted from the surface, is 
plotted in Figs. 5 and 6 over the dimensionless 
distance from the plate rim. The first of these 
is for a wide spacing, h/L = 1, while the second 
is for a close spacing, h/L = 0.05. Curves are 
presented for emissivities 0.1, 0.5, and 0.9 as 
dashed lines, and the heat losses encountered by 
diffusely reflecting plates are also shown for 
comparison purposes as full lines. This last 
information was taken from the analysis 
published in Ref. 4. 

The curves in Fig. 5 indicate that the heat loss 
of parallel plates is larger when the plates reflect 
diffusely. This can be explained by the fact that 

at each diffuse reflection the impinging ray is 
distributed in all directions and that by this 
process, in the average, the radiative flux has a 
better chance to escape through the opening 
between the plates. Additionally, the level of the 
curves increases with decreasing E (increasing 
reflectivity), since radiative energy escapes not 
only as direct radiation, but also in the subse- 
quent reflections. This increase in the heat loss 
in either reflection process is very slight for 
E = 0.9, as can be recognized by a comparison 
of the pertinent curves of Fig. 5 with the heat 
loss results for black surfaces (c = 1). A simple 
calculation determines the heat loss parameter of 
black plates as O-646 for X = 0 and as 0.552 for 
x = &. 

Figure 6 presents, in the same way, the results 
for a close spacing of the plates (h/L = 0.05). It 
can be seen that near the rim of the plates the 
relative position of the curves for specular and 
for diffuse reflection is the same as for the wider 
spacing of Fig. 5. In the inner part, however, the 
trend reverses and the heat loss of the plates with 
specular reflection is larger than the heat loss 
of the diffusely reflecting plates. This may be 
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- DlFFUSE REFLECTION (ret41 

- - -- SPECULAR REFLECTION 

FIG. 6. Local heat flux results for parallel plate system with y = h/L = 0.05. 

explained by the fact that radiation originating 
at the inner part of the plates escapes through 
the opening between the plates in general 
only after a larger number of reflections. The 
number of reflections, however, will, in an 
average, be smaller if the plates reflect specularly. 
It is again found that the curves for E = O-9 are 
located only slightly above the curve for E = 1, 
so that for this emissivity, reflections contribute 
only to a very small degree to the heat loss 
parameter. 

The total heat loss from the surface of any 
plate has also been calculated from equation (25) 
and is presented in Table l(a). The average heat 
flux Q/L per unit area and unit time has been 
divided by the energy flux leaving a unit area of 
a black surface at the plate temperature T. It is 
to be noted that the tabulated parameter has 

D 

not been normalized by E as were the ordinates 
of Figs. 5 and 6. Values for four plate spacings 
and for three emissivities have been entered for 
specular reflection as well as for diffuse reflection. 
Two sets of vaIues for diffuse reflection were 
available from Ref. 4. One group of values 
presents the solutions of an integral equation 
describing the energy exchange process exactly. 
The second series of values results from a 
simplified analysis which neglects the local 
variation of the reflected radiative flux and re- 
places in this way the integral equation by an 
algebraic one. According to the specific definition 
of the heat loss parameter, the values of this 
parameter decrease with decreasing emissivity 
as contrasted to the behavior of the parameter 
presented in Figs. 5 and 6. The differences 
between specular and diffuse reflection are 
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Table 1. Overall heat loss, (Q/L)/(aT4) 

(a) Parallelplate system (Fig. 4) 

Specular 
Diff. Diff. 

exact. simpl. Specular 
Diff. 

exact. 
Diff. 

Specular ~ 
1 Diff. 

simpl. . / simpl. 
____ --I 

I.0 0.08826 ~ 0.09338 / 0.09340 0.3503 0.3692 0.3694 0.5439 ~ 0.5500 0.5500 
0.5 0.07948 ~ 0.08576 / 0.08607 0.2622 0.2747 0.2764 0.3632 0.3658 1 0.3664 

0.1 oG4735 
~ 

0.0442 / 0.05122 0.05 0.03220 ~ 0.0252 0.03388 I 
/ 

8:;;;;; ;::;;g ~ 
~ 

;:;g; ;:;;g; 1 ;:;;;;; ~ 8:;;:; 

(b) Adjoint plate system (Fig. 7) 

E = 0.5 E = 0.9 

~ 
/ Specular 

Diff. ~ Diff. 
Specular 

Diff. ~ Diff. 
exact. simpl. exact. 1 simpl. 

--, 
135’ 0.0992 ~ 0.0992 ~ 
90’ 0.0971 0.0958 ~ 
60’ 0.0938 0.0899 
45 0.0906 0.0838 

~ ___I _ .~.~ ~~~~~ 

0.0992 0.481 
0.0960 0.427 
0.0909 0,358 
0.0861 0,304 

largest for a close spacing and for a small 
emissivity. For h/L = 0.05 and E = 0.1, the heat 
loss of the specularly reflecting surface is larger 
by 28 per cent than the exactly calculated value 
for diffuse reflection. For this case, the error 
which is made by the use of the simplified 
analysis for diffuse reflection is even larger than 
the difference between specular and diffuse 
reflection. 

The information in Figs. 5 and 6 and in 
Table 1 can immediately be used to determine 
the heat loss from parallel plates for the situa- 
tion that they are in energy exchange by radia- 
tion with a black environment at a temperature 
T,. The only change which has to be made in 
equations (23) and (25) as well as in the figures 
and table is that the term aT4 in the denominator 
has to be replaced by a(T* - T,“). This is 
immediately evident from the fact that radiation 
entering from the environment consists of rays 
which experience exactly the same fate as rays 
starting from the plate surfaces and traveling 
to the environment. One can also consider the 
situation that the environment and the plates are 

0,480 0.480 0.838 0,838 1 0,838 
0.412 

~ 
~ 0,414 0.663 0,655 / 0.656 

0.327 0.333 0,474 0.484 0,472 1 
0,268 0.277 0.376 0,365 ~ 1 0.367 

at the same temperature. In this case the geo- 
metry corresponds to an isothermal, closed 
“hohlraum” and no net heat flux can exist in 
such an enclosure according to the second law 
of thermodynamics. 

Two plutes ,fbrming a groove 
Figure 7 indicates two plates of width L 

arranged in such a way that they form a groove 

2 

AliL 4 

,A-l/_d. I 

I 

l-----L-----l 
FIG. 7. Adjoint plate system. 

with an opening angle 0. It will again be assumed 
that the plates have infinite length normal to the 
plane of drawing, and also, to provide compari- 
sons with available diffuse results, that both 
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plates have equal and uniform temperatures. 
The angle factor under which an area element 
dA, sees the opposite plate is 

or expressed in the parameters X = x/L and 0 

FdA,-A2 = 

{ 

case - x 
Fe = 3 1 + d(l _ 2xcos d-tX2) > 

. (27) 

The situation in the present arrangement is 
different from the one in the previous section 
insofar that, after a finite number of reflections, 
an image is formed whose enveloping ray bundle 
as seen from dA, does not intersect the opposite 
surface. For an included angle of 90”, for 
instance, the image generated by the first reflec- 
tion is already subject to this condition. Corres- 
pondingly, the heat flux q is described by the 
following equation which contains only the 
angle factor for direct radiative interchange 

For an included angle of 45”, the enveloping 
ray bundles drawn from dA, to the first and the 
second images 1, and 2, intersect the opposite 
plate. However, the enveloping ray bundles 
drawn from dA, to further images do not 
intersect A,. Hence, the local heat loss q per 
unit area is described by an equation which 
contains three angle factors including the one 
for direct interchange as well as for the first 
image, which is a plate inclined under an angle 
0 = 90”, and for the second image, which is a 
plate inclined under 0 = 135” 

q 
CUT4 - 1 - 4F.s~ + pFs,,o + P%,~). (2% 

The angle factors in equations (28) and (29) are 
obtained from equation (27) when the proper 
angle 0 is inserted. 

The results of the calculation are presented in 
Figs. 8 and 9, respectively, for 90” and 45” 
opening angles. The heat loss parameter has been 
calculated for emissivity values 0.1, 0.5, and 
0.9. The dashed curves indicate the heat losses 
for specular reflection, and the corresponding 

- DIFFUSE REFLECTION (ref. 4) 

----SPECULAR REFLECTION 

FIG. 8. Local heat flux results for adjoint plate system with 0 = 90”. 
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Fx. 9. Local heat flux results for adjoint plate system with 0 = 35 

losses for diffuse reflection have again been 
entered as full lines for comparison purposes. 
These values have been taken from the analysis 
in Ref. 4. For both opening angles, the heat loss 
of plates with specular reflection is larger than 
the heat loss of diffusely reflecting surfaces. This 
is explained by the fact that the angular arrange- 
ment of the plates makes it easy for specularly 
reflected radiation to escape through the 
opening. 

Table 1 (b) contains the average heat loss 
Q/L of the surfaces per unit area, divided by the 

energy emitted from a black surface at the 
specific temperature T. It should be noted that 
this parameter is not normalized by E as were 
the ordinates of the figures. The results of 
calculations for four angles and for three 
emissivity values are presented. Results from 
Ref. 4 for diffuse reflection are also entered. 
The two columns for diffuse reflection present 
the results obtained by the solution of the integral 
equation and those from the simplified method. 
The heat loss parameter in this table compares 
the actual heat loss with the energy emitted by a 
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black surface, and it consequently decreases with 
decreasing emissivity values. The differences 
between specular and diffuse reflection are found 
to be largest for a small opening angle and for a 
low emissivity. The difference between the exact 
solution for diffuse reflection and the solution 
for specular reflection is 8 per cent for 0 = 45” 
and E = 0.1. Because the 45” angle is still a 
relatively open configuration, this difference is 
considerably smaller than the differences existing 
for concentric cylinders or spheres and also 
smaller than the differences between the closely 
spaced parallel plates. 

ACTUAL DIRECTIONAL DISTRIBUTION OF 
REFLECTED RADIATION 

Figures 10 and 11 present the angular distribu- 
tion of reflected radiation for a few solid 
surfaces taken from Ref. 3. The curves have been 

I 0 

FIG. 10. Directional distribution of reflected radia- 
tion (black incident energy): u-aluminum paint; 
b-iron, scraped; c-black iron; d&copper oxide. 
pp = measured reflectivity. pbw = reflectivity of a 
perfectly diffuse white surface. (From Ref. 3, Fig. 

13-13). 

obtained by directing a bundle of radiant 
energy with nearly normal incidence and with an 
opening angle of 6” towards the surface. The 
incident radiation came from a black body at the 
temperature 530°F and the reflecting surface 
was kept at atmospheric temperature. It can be 
recognized that the angular distribution of the 
reflected radiation for any of the surfaces is 

neither completely specular nor completely 
diffuse. The figures show that surfaces which 
appear specular to the eye approach more 
closely to specular reflection than to diffuse 
reflection for thermal radiation. But, even 
surfaces which appear diffuse to the eye (e.g. 
clay, scraped iron) may reflect a considerable 

FIG. 11. Directional distribution of reflected radiation 
(black incident energy): e+ast iron; f--clay; 
g-wood. p,g = measured reflectivity. p,qm = re- 
flectivity of a perfectly diffuse white surface. (From 

Ref. 3, Fig. 13-14). 

portion of thermal radiation in the proximity of 
the specularly reflected ray. The measurements 
reported in Ref. 2 indicate that the distribution 
of reflected radiation depends considerably on 
the angle of incidence. 

A calculation which incorporates the actual 
distribution would be extremely involved and 
would be restricted to the specific surface. For 
this reason it is recommended that the data for 
specular and completely diffuse reflection be used 
to obtain limiting values for the heat loss. It 
is also possible to interpolate between these 
limiting values for a specific surface by assigning 
a certain fraction of the reflected energy to 
specular and the rest to diffuse reflection. 
Distribution curves like the ones presented in 
Figs. 10 and 11 may be used to make an estimate 
on these fractions. 
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